4 research outputs found

    Automated Testing For Software Process Automation

    Get PDF
    Robotic Process Automation is a way of automatizing business processes within short timespans. At the case company the initial automation step is implemented by business experts, rather than software developers. Using developers with limited software engineering experience allows for high speed but raises concerns of automation quality. One way to reduce these concerns is extensive testing, which takes up much time for integration developers. The aim of this thesis is to increase the quality of the development process, while minimizing impact on development time through test automation. The research is carried out as a part of the Robotic Process Automation project at the case company. The artifact produced by this thesis is a process for automatically testing software automation products. Automated testing of software automation solutions was found to be technically feasible, but difficult. Robotic process automation provides several novel challenges for test automation, but certain uses such as regression and integration testing are still possible. Benefits of the chosen approach are traceability for quality, developer confidence and potentially increased development speed. In addition, test automation facilitates the adoption of agile software development methods, such as continuous integration and deployment. The usage of continuous integration in relation to Robotic Process Automation was demonstrated via a newly developed workflow.Ohjelmistoautomaatio on nopea tapa automatisoida liiketoimintaprosessien rutiineja. Tapausyrityksessä automaation luovat ohjelmistonkehittäjien sijasta liiketoiminnan asiantuntijat. Käyttämällä alkukehittäjiä, joilla on vähäisesti kokemusta ohjelmistokehityksestä, saadaan nopeita ratkaisuja, mutta samalla yrityksellä on huolia laadusta. Laatua voidaan mitata testaamalla automaatioratkaisuja laajasti, mutta tähän menee huomattavasti aikaa. Tämän tutkielman tarkoituksena on testiautomaatiota käyttämällä nostaa kehitysprosessin laatua ilman että työmäärä kasvaa merkittävästi. Tutkimus suoritettiin osana tapausyrityksen ohjelmistorobotiikkaprojektia. Tutkielmassa luotiin prosessi, jossa automaattisesti testataan ohjelmistoautomaatioprosesseja. Testaus todettiin tutkimuksessa mahdolliseksi mutta käytännössä haasteelliseksi. Testauksessa ilmeni useita ongelmia, mutta muutamat ratkaisut kuten regressio- ja integraatiotestaus todettiin kuitenkin hyödyllisiksi. Lähestymistavan hyödyiksi todettiin laadun jäljitettävyyden, kehittäjien itseluottamuksen ja kehitysnopeuden kasvu. Lisäksi testiautomaatio mahdollistaa nykyaikaisten ketterien menetelmien kuten jatkuvan integraation käytön. Jatkuvan integraation käyttömahdollisuus demonstroitiin uudistetulla työtavalla

    Temporal phase-contrast ghost imaging

    No full text
    We introduce a phase-contrast ghost-imaging scheme for the characterization of temporal phase objects in terms of intensity correlations at two photodetectors. The technique is analogous to Zernike's phase-contrast imaging method and is based on utilizing a suitable filter function which renders the small-amplitude phase variations visible in the intensity correlation function. The approach is insensitive to temporal distortions and offers a promising method to analyze the phases of optical pulses.Peer reviewe

    Geometric phase in beating of light waves

    No full text
    Beating is a simple physical phenomenon known for long in the context of sound waves but remained surprisingly unexplored for light waves. When two monochromatic optical beams of different frequencies and states of polarization interfere, the polarization state of the superposition field exhibits temporal periodic variation-polarization beating. In this work, we reveal a foundational and elegant phase structure underlying such polarization beating. We show that the phase difference over a single beating period decomposes into the Pancharatnam-Berry geometric phase and a dynamical phase of which the former depends exclusively on the intensities and polarization states of the interfering beams whereas the sum of the phases is determined solely by the beam frequencies. Varying the intensity and polarization characteristics of the beams, the relative contributions of the geometric and dynamical phases can be adjusted. The geometric phase inherent in polarization beating is governed by a compact expression containing only the Stokes parameters of the interfering waves and can alternatively be obtained from the individual beam intensities and the amplitude of the intensity beats. We demonstrate both approaches experimentally by using an interferometer with a fast detector and a specific polarimetric arrangement. Polarization beating has a unique character that the geometric and dynamical phases are entangled, i.e. variation in one unavoidably leads to a change in the other. Our work expands geometric phases into a new domain and offers important novel insight into the role of polarization in interference of electromagnetic waves.Peer reviewe

    Noncyclic continuous Pancharatnam—Berry phase in dual-beam interference

    No full text
    Abstract The geometric phase for classical electromagnetic light beams, in its original formulation as introduced by Pancharatnam, concerns fields experiencing cyclic, discrete in-phase polarization-state changes. A similar phase was later recognized by Berry to govern the behavior of adiabatic quantum systems, with consequent extensions to nonadiabatic and noncyclic evolutions of the quantum state. However, no optical counterpart for the noncyclic, adiabatic (continuous) evolution has been demonstrated. Here we employ a modified Young’s two-pinhole setup with controlled pinhole polarizations and intensities to generate on interference an arbitrary continuous spatial evolution of the polarization state, an optical analogue to the adiabatic case. The customized arrangement allows separating at any point the accumulated dynamical and geometric phases from the total phase, enabling a detailed study of the noncyclic Pancharatnam–Berry phase in a continuous transformation. Our theoretical and experimental results are in excellent agreement and consistent with the geodesic rule for noncyclic evolutions
    corecore